Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Disodium zinc bis(sulfate) tetrahydrate (zinc astrakanite) revisited

M. Enriqueta Díaz de Vivar, ${ }^{\text {a* }}$ Sergio Baggio, ${ }^{\text {a }}$ Andrés Ibáñez ${ }^{\text {b }}$ and Ricardo Baggio ${ }^{\text {c }}$
${ }^{a}$ Universidad Nacional de la Patagonia, Sede Puerto Madryn, and CenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, ${ }^{\text {b }}$ Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, and CIMAT, Casilla 487-3, Santiago de Chile, Chile, and ${ }^{\text {c }}$ Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Correspondence e-mail: undiaz@cenpat.edu.ar

Received 7 March 2008; accepted 8 April 2008
Key indicators: single-crystal X-ray study; $T=170 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{O})=0.001 \AA$; R factor $=0.018 ; \omega R$ factor $=0.055$; data-to-parameter ratio $=11.2$.

We present a new low-temperature refinement of disodium zinc bis(sulfate) tetrahydrate $\{$ systematic name: poly[tetra- μ -aqua-di- μ-sulfato-zinc(II)disodium(I) $]\}, \quad\left[\mathrm{Na}_{2} \mathrm{Zn}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$ or Zn astrakanite, which is an upgrade of previously reported data [Bukin \& Nozik (1974). Zh. Strukt. Khim. 15, 712-716]. The compound is part of an isostructural family containing the Mg (the original astrakanite mineral), Co and Ni species. The very regular $\mathrm{ZnO}(\text { aqua })_{4} \mathrm{O}$ (sulfate) $)_{2}$ octahedra lie on centres of symmetry, while the rather distorted NaO (aqua) ${ }_{2} \mathrm{O}$ (sulfate) $)_{4}$ octahedra appear at general positions, linked into a three-dimensional network by the bridging water molecules and the fully coordinated sulfate groups.

Related literature

For related literature, see: Rumanova (1958); Giglio (1958); Bukin \& Nozik (1974, 1975); Díaz de Vivar et al. (2006).

Experimental

Crystal data
$\left[\mathrm{Na}_{2} \mathrm{Zn}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=375.53$
Monoclinic, $P 2_{1_{1}} / c$
$a=5.5075$ (2) A
$b=8.2127$ (3) \AA
$c=11.0559$ (4) \AA
$\beta=99.958$ (10) ${ }^{\circ}$

$$
V=492.54(3) \AA^{3}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=3.07 \mathrm{~mm}^{-1}$
$T=170$ (2) K
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.452, T_{\text {max }}=0.728$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.054$
$S=1.00$
1080 reflections
96 parameters
6 restraints

3533 measured reflections 1080 independent reflections 1062 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.012$

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{O} 1 W$	$2.0636(11)$	$\mathrm{Na} 1-\mathrm{O} 1$	$2.4016(12)$
$\mathrm{Zn} 1-\mathrm{O} 3$	$2.0952(11)$	$\mathrm{Na} 1-\mathrm{O} 1 W$	$2.4017(12)$
$\mathrm{Zn} 1-\mathrm{O} 2 W$	$2.1285(11)$	$\mathrm{Na} 1-\mathrm{O} 2^{\text {iii }}$	$2.4224(13)$
$\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.3603(12)$	$\mathrm{Na} 1-\mathrm{O} 2 W^{\text {iv }}$	$2.5694(13)$
$\mathrm{Na} 1-\mathrm{O} 4^{\mathrm{ii}}$	$2.3786(12)$		

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 1^{\text {iii }}$	0.800 (17)	1.916 (17)	2.6977 (17)	165 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O}^{\text {v }}$	0.832 (16)	1.901 (16)	2.7288 (17)	173 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 1^{\text {ii }}$	0.826 (16)	2.051 (18)	2.8468 (16)	162 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 4^{\text {vi }}$	0.805 (16)	2.15 (2)	2.8779 (16)	151 (3)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors acknowledge the Spanish Research Council (CSIC) for providing a free-of-charge licence to the Cambridge Structural Database (Allen, 2002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2061).

inorganic compounds

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2001). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bukin, V. I. \& Nozik, Yu. Z. (1974). Zh. Strukt. Khim. 15, 712-716.
Bukin, V. I. \& Nozik, Yu. Z. (1975). Kristallografiya, 20, 293-296.

Díaz de Vivar, M. E., Baggio, S., Garland, M. T. \& Baggio, R. (2006). Acta Cryst. E62, i196-i198.
Giglio, M. (1958). Naturwissenschaften, 45, 82-83.
Rumanova, I. M. (1958). Dokl. Akad. Nauk SSSR, 118, 84-87.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Disodium zinc bis(sulfate) tetrahydrate (zinc astrakanite) revisited

M. E. Díaz de Vivar, S. Baggio, A. Ibáñez and R. Baggio

Comment

The original mineral astrakanite $\left[\mathrm{Na}_{2} \mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right], M=\mathrm{Mg}$, structurally characterized almost 50 years ago (Rumanova, 1958), gave its name to a whole isostructural family, of which some members have been known for a long while ($M=\mathrm{Zn}$, Giglio, 1958; Bukin \& Nozik, 1974; $M=$ Co, Bukin \& Nozik, 1975), while the Ni analogue has been only recently reported, (Díaz de Vivar et al., 2006). We present herein an improved, low temperature data refinement of the zinc member of the group, $\mathrm{Na}_{2} \mathrm{Zn}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ (I), unwittingly obtained as a byproduct while looking for something else (See experimental section).

Fig. 1 shows the asymmetric unit of (I) as well as part of its close environment, and Table 1 presents some selected bond distances. The structure consists of ZnO (aqua) $)_{4} \mathrm{O}(\text { sulf })_{2}$ and NaO (aqua) $)_{2} \mathrm{O}$ (sulf) $)_{4}$ octahedra in a $1: 2$ ratio, linked through two bridging water molecules $(\mathrm{O} 1 \mathrm{~W}, \mathrm{O} 2 \mathrm{~W})$ and the fully coordinated sulfato groups.

Zn cations lay on centers of symmetry and their coordination polyhedra defined by O3, O1w, O2w and their respective centrosymmetric counterparts are quite regular, possibly due to the large number of geometrically unconstrained aqua molecules (Parameters range: $\mathrm{Zn}-\mathrm{O}, 2.0636(11)-2.1285(11) \AA$; $(\mathrm{O}-\mathrm{Zn}-\mathrm{O})_{\text {cis }}, 87.38(5)-92.62(5)^{\circ}$; ($\left.\mathrm{O}-\mathrm{Zn}-\mathrm{O}\right)_{\text {trans }}$, $180 .^{\circ}$, fixed by symmetry). Na cations, instead, occupy general positions and, contrasting the former, their O (sulf)-rich coordination octahedra appear as quite irregular (Parameters range: $\mathrm{Na}-\mathrm{O}, 2.3603$ (12)-2.5694 (13) \AA; ($\mathrm{O}-\mathrm{Na}-\mathrm{O})_{\text {cis }}$, 74.93 (4)-112.94 (4) ${ }^{\circ}$ ($\left.\mathrm{O}-\mathrm{Na}-\mathrm{O}\right)_{\text {trans }}, 155.87$ (5)-162.11 (5) ${ }^{\circ}$).

The geometry of the sulfate anion is rather regular, with S-O distances in the range 1.4619 (11) to 1.4878 (11) \AA and angles from $107.38(5)$ to $110.89(7)^{\circ}$. The group exhibits a complex $\mu_{5}-\kappa^{4}-\mathrm{O}: O^{\prime}: O^{\prime \prime}: O^{\prime \prime}$ coordination, binding in a monocoordinated fashion to Zn through O 3 and to Na through O 1 and O 4 , while bridging two Na cations through O 2 . The result of this intricate interconnectivity is the formation of broad two-dimensional structures parallel to (100) containing both types of polyhedra (Fig.1) and internally linked by the two bridging aqua and O atoms $\mathrm{O} 1, \mathrm{O} 2$ and O 3 from the sulfate anion.

These "planes", in turn, are interconnected along a single "strong" interaction, the $\mathrm{O} 4-\mathrm{Na} 1$ bonds between sulfate O 4 atoms from a given layer and Na 1 cations from their neighbours (Fig. 2).

Also H-bonding interactions (Table 2) contribute to the intraplane (via O1W, entries 1 and 2) and interplane (via O2W, entries 3 and 4) cohesion.

It is worth noting that O 1 and O 4 act as the only (double) acceptors for H -bonding. In analyzing the $\mathrm{S}-\mathrm{O}$ bond lengths, it appears that $\mathrm{S} 1-\mathrm{O} 1$ and $\mathrm{S} 1-\mathrm{O} 4$ present precisely the longest distances suggesting a slight weakening effect on the $\mathrm{S}-\mathrm{O}$ covalent link due to the oxygen involvement in H interactions.

Even though the isostructural character of (I) with the rest of the strakanite family is obvious by inspection, the low precision with which the Mn and Co members have been reported leaves comparison with the Ni moiety as the only relevant

supplementary materials

one. In this respect, both structures are almost undistinguishable, as proved by the least squares fit of the extended group shown in Fig. 3, where the maximum departure amounts for less than $0.05 \AA$ for atom O 2 W .

Experimental

The compound was obtained an an unintended product in a synthesis of $\mathrm{Zn}(\mathrm{II})$ complexes. Recently prepared anysaldehyde bisulfitic derivative (60 mg) were dissolved in 5 ml of water and mixed with an aqueous solution of Zn acetate ($112 \mathrm{mg} / 5$ ml). The aqueous mixture was left in a methanol atmosphere, until colourless cubic crystals were obtained.

Refinement

Hydrogen atoms pertaining to water molecules were found in the difference- Fourier synthesis and refined with restrained $\mathrm{O}-\mathrm{H}: 0.82(2) \AA, \mathrm{H} \cdots \mathrm{H}: 1.35$ (2) \AA, but free isotropic displacement parameters.

Figures

poly[tetra- μ-aqua-di- μ-sulfato-zinc(II)disodium(I)]

Crystal data

$\left[\mathrm{Na}_{2} \mathrm{Zn}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=375.53$
Monoclinic, $P 2_{1} / c$
$F_{000}=376$
$D_{\mathrm{x}}=2.539 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation

Hall symbol: -P 2ybc
$a=5.5075$ (2) \AA
$b=8.2127$ (3) \AA
$c=11.0559$ (4) \AA
$\beta=99.9580(10)^{\circ}$
$V=492.54(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=170(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.452, T_{\text {max }}=0.728$
3533 measured reflections
$\lambda=0.71073 \AA$
Cell parameters from 3942 reflections
$\theta=3.8-26.7^{\circ}$
$\mu=3.07 \mathrm{~mm}^{-1}$
$T=170$ (2) K
Prism, colourless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

1080 independent reflections

1062 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=27.9^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$
$h=-6 \rightarrow 7$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 14$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0408 P)^{2}+0.265 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.53$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.080 (4)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Zn1	0.0000	0.0000	0.0000	$0.00887(13)$
Na1	$0.12607(11)$	$0.07173(8)$	$0.36217(5)$	$0.01231(17)$
S1	$0.37405(6)$	$0.28842(4)$	$0.13609(3)$	$0.00821(14)$
O1	$0.3516(2)$	$0.27120(14)$	$0.26765(10)$	$0.0127(2)$
O2	$0.2085(2)$	$0.41630(14)$	$0.07871(10)$	$0.0136(3)$
O3	$0.3186(2)$	$0.13129(14)$	$0.07174(10)$	$0.0134(2)$
O4	$0.63500(19)$	$0.32955(13)$	$0.13056(10)$	$0.0127(2)$
O1W	$-0.1247(2)$	$0.03807(16)$	$0.16331(10)$	$0.0110(2)$
O2W	$0.1753(2)$	$-0.21442(13)$	$0.08065(10)$	$0.0115(2)$
H1WA	$-0.215(5)$	$-0.032(3)$	$0.179(2)$	$0.028(7)^{*}$
H1WB	$-0.207(4)$	$0.123(2)$	$0.156(2)$	$0.023(6)^{*}$
H2WA	$0.299(4)$	$-0.203(3)$	$0.1341(18)$	$0.021(6)^{*}$
H2WB	$0.213(5)$	$-0.278(3)$	$0.032(2)$	$0.034(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.01021(18)$	$0.00753(17)$	$0.00909(17)$	$-0.00024(7)$	$0.00231(11)$	$-0.00054(7)$
Na 1	$0.0133(3)$	$0.0116(3)$	$0.0118(3)$	$-0.0002(2)$	$0.0015(2)$	$0.0005(2)$
S 1	$0.0083(2)$	$0.0075(2)$	$0.0089(2)$	$0.00016(12)$	$0.00150(13)$	$-0.00049(12)$
O 1	$0.0156(6)$	$0.0130(5)$	$0.0101(5)$	$0.0014(4)$	$0.0034(4)$	$0.0013(4)$
O2	$0.0149(5)$	$0.0139(6)$	$0.0119(5)$	$0.0051(4)$	$0.0017(4)$	$0.0017(4)$
O3	$0.0111(5)$	$0.0109(5)$	$0.0179(5)$	$-0.0016(4)$	$0.0022(4)$	$-0.0054(4)$
O4	$0.0103(5)$	$0.0110(5)$	$0.0176(5)$	$-0.0021(4)$	$0.0042(4)$	$-0.0016(4)$
O1W	$0.0114(5)$	$0.0098(5)$	$0.0122(5)$	$0.0000(4)$	$0.0035(4)$	$0.0002(4)$
O2W	$0.0120(5)$	$0.0100(5)$	$0.0118(5)$	$0.0007(4)$	$-0.0002(4)$	$-0.0017(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{O} \mathrm{W}^{\text {i }}$	2.0636 (11)
Zn1-O1W	2.0636 (11)
Zn1-O3	2.0952 (11)
$\mathrm{Zn} 1-\mathrm{O} 3^{\text {i }}$	2.0952 (11)
Zn1-O2W	2.1285 (11)
$\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}^{\text {i }}$	2.1285 (11)
$\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.3603 (12)
$\mathrm{Na}-\mathrm{O} 4^{\text {iii }}$	2.3786 (12)
Na1-O1	2.4016 (12)
Na1-O1W	2.4017 (12)
$\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iv }}$	2.4224 (13)
O1W ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}$	180.00 (9)
O1W ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{O} 3$	91.46 (4)

$\mathrm{Na} 1-\mathrm{O}_{2} \mathrm{~W}^{\mathrm{v}}$	$2.5694(13)$
$\mathrm{Na} 1 — \mathrm{Na}^{\mathrm{vi}}$	$3.7507(12)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4619(11)$
$\mathrm{S} 1 — \mathrm{O} 3$	$1.4797(11)$
$\mathrm{S} 1 — \mathrm{O} 1$	$1.4876(11)$
$\mathrm{S} 1 — \mathrm{O} 4$	$1.4878(11)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WA}$	$0.800(17)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WB}$	$0.832(16)$
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA}$	$0.826(16)$
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WB}$	$0.805(16)$
$\mathrm{O} 1 — \mathrm{Na} 1-\mathrm{O} 2 \mathrm{~W}^{\mathrm{v}}$	$92.61(4)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Na} 1-\mathrm{O}^{2} \mathrm{~W}^{\mathrm{v}}$	$90.58(4)$

sup-4

supplementary materials

O1W-Zn1-O3	88.54 (4)	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 2 \mathrm{~W}^{\text {v }}$	74.93 (4)
O1W ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 3^{\text {i }}$	88.54 (4)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	110.89 (7)
O1W-Zn1-O3 ${ }^{\text {i }}$	91.46 (4)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	109.97 (6)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 3{ }^{\text {i }}$	180.00 (8)	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	110.00 (7)
O1W ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}$	92.62 (5)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4$	110.71 (7)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}$	87.38 (5)	O3-S1-O4	107.38 (6)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}$	88.72 (4)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 4$	107.81 (7)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}$	91.28 (4)	$\mathrm{S} 1-\mathrm{O} 1-\mathrm{Na} 1$	128.83 (7)
O1W ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}^{\text {i }}$	87.38 (5)	$\mathrm{S} 1-\mathrm{O} 2-\mathrm{Na} 1^{\text {vii }}$	117.79 (6)
O1W-Zn1-O2W ${ }^{\text {i }}$	92.62 (5)	$\mathrm{S} 1-\mathrm{O} 2-\mathrm{Na} 1^{\mathrm{v}}$	135.07 (7)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}^{\text {i }}$	91.28 (4)	$\mathrm{Na} 1^{\mathrm{vii}}-\mathrm{O} 2-\mathrm{Na} 1^{\mathrm{v}}$	103.29 (4)
O3i ${ }^{\text {i }} \mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}^{\text {i }}$	88.72 (4)	S1-O3-Zn1	136.09 (7)
O2W-Zn1-O2W ${ }^{\text {i }}$	180.00 (7)	S1-O4-Na1 ${ }^{\text {viii }}$	136.15 (7)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 4{ }^{\text {iii }}$	89.56 (4)	$\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}-\mathrm{Na} 1$	126.34 (5)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 1$	112.94 (4)	$\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WA}$	113 (2)
$\mathrm{O} 4{ }^{\text {iiii }}$ - $\mathrm{Na} 1-\mathrm{O} 1$	105.09 (4)	Nal-O1W-H1WA	99.6 (19)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 1 \mathrm{~W}$	155.87 (5)	Zn1-O1W-H1WB	107.7 (17)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Na}-\mathrm{O} 1 \mathrm{~W}$	99.32 (5)	Na1-O1W-H1WB	102.0 (17)
$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 1 \mathrm{~W}$	86.50 (4)	H1WA-O1W-H1WB	106 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iv }}$	76.71 (4)	$\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}-\mathrm{Na} 1^{\text {iv }}$	113.77 (5)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iv }}$	89.57 (4)	$\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA}$	117.7 (16)
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iv }}$	162.11 (5)	$\mathrm{Na} 1^{\text {iv }}-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA}$	112.8 (17)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Na}-\mathrm{O}^{2 \mathrm{iv}}$	80.94 (4)	$\mathrm{Zn} 1-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WB}$	114.1 (18)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2 \mathrm{~W}^{\mathrm{v}}$	75.00 (4)	$\mathrm{Na} 1^{\text {iv }}-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WB}$	89 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2 \mathrm{~W}^{\mathrm{V}}$	160.12 (5)	H2WA-O2W-H2WB	106 (2)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x,-y+1 / 2, z+1 / 2$; (iii) $-x+1, y-1 / 2,-z+1 / 2$; (iv) $-x, y-1 / 2,-z+1 / 2$; (v) $-x, y+1 / 2,-z+1 / 2$; (vi) $-x$, $-y,-z+1$; (vii) $x,-y+1 / 2, z-1 / 2$; (viii) $-x+1, y+1 / 2,-z+1 / 2$.

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W—H1WA $\cdots \mathrm{O} 1^{\text {iv }}$	$0.800(17)$	$1.916(17)$	$2.6977(17)$	$165(3)$
O1W—H1WB $\cdots \mathrm{O}^{\text {ix }}$	$0.832(16)$	$1.901(16)$	$2.7288(17)$	$173(2)$
O2W—H2WA $\cdots \mathrm{O} 1^{\text {iii }}$	$0.826(16)$	$2.051(18)$	$2.8468(16)$	$162(2)$
O2W—H2WB $\cdots 4^{\mathrm{x}}$	$0.805(16)$	$2.15(2)$	$2.8779(16)$	$151(3)$

Symmetry codes: (iv) $-x, y-1 / 2,-z+1 / 2$; (ix) $x-1, y, z$; (iii) $-x+1, y-1 / 2,-z+1 / 2$; (x) $-x+1,-y,-z$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

